1,163 research outputs found

    Compressible hydromagnetic nonlinearities in the predecoupling plasma

    Full text link
    The adiabatic inhomogeneities of the scalar curvature lead to a compressible flow affecting the dynamics of the hydromagnetic nonlinearities. The influence of the plasma on the evolution of a putative magnetic field is explored with the aim of obtaining an effective description valid for sufficiently large scales. The bulk velocity of the plasma, computed in the framework of the LambdaCDM scenario, feeds back into the evolution of the magnetic power spectra leading to a (nonlocal) master equation valid in Fourier space and similar to the ones discussed in the context of wave turbulence. Conversely, in physical space, the magnetic power spectra obey a Schroedinger-like equation whose effective potential depends on the large-scale curvature perturbations. Explicit solutions are presented both in physical space and in Fourier space. It is argued that curvature inhomogeneities, compatible with the WMAP 7yr data, shift to lower wavenumbers the magnetic diffusivity scale.Comment: 29 page

    Polarization of Instantons and Gravity

    Full text link
    Gravity can arise in a conventional non-Abelian gauge theory in which a specific phenomenon takes place. Suppose there is a condensation of polarized instantons and antiinstantons in the vacuum state. Then the excitations of the gauge field in the classical approximation are described through the variables of Riemann geometry satisfying the Einstein equations of general relativity. There are no dimensional coupling constants in the theory.Comment: 3 page

    Evidence for topological nonequilibrium in magnetic configurations

    Full text link
    We use direct numerical simulations to study the evolution, or relaxation, of magnetic configurations to an equilibrium state. We use the full single-fluid equations of motion for a magnetized, non-resistive, but viscous fluid; and a Lagrangian approach is used to obtain exact solutions for the magnetic field. As a result, the topology of the magnetic field remains unchanged, which makes it possible to study the case of topological nonequilibrium. We find two cases for which such nonequilibrium appears, indicating that these configurations may develop singular current sheets.Comment: 10 pages, 5 figure

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.

    More on the Tensor Response of the QCD Vacuum to an External Magnetic Field

    Full text link
    In this Letter we discuss a few issues concerning the magnetic susceptibility of the quark condensate and the Son-Yamamoto (SY) anomaly matching equation. It is shown that the SY relation in the IR implies a nontrivial interplay between the kinetic and WZW terms in the chiral Lagrangian. It is also demonstrated that in a holographic framework an external magnetic field triggers mixing between scalar and tensor fields. Accounting for this, one may calculate the magnetic susceptibility of the quark condensate to all orders in the magnetic field.Comment: 20 pages, 2 figure

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Breaking Of Conformal Invariance And Electromagnetic Field Generation In The Universe

    Full text link
    It is shown that the breaking of the conformal invariance in quantum electrodynamics due to the trace anomaly results in the generation of long wave electromagnetic fields during inflationary stage of the universe evolution. If the coefficient of the logarithmic charge renormalization is large (due to a large number of charged particles species), these primordial electromagnetic fields can be strong enough to create the observed galactic magnetic fields.Comment: 6 pages, UM - TH - 93 - 0

    U_A(1) Anomaly at high temperature: the scalar-pseudoscalar splitting in QCD

    Full text link
    We estimate the splitting between the spatial correlation lengths in the scalar and pseudoscalar channels in QCD at high temperature. The splitting is due to the contribution of the instanton/anti-instanton chains in the thermal ensemble, even though instanton contributions to thermodynamic quantities are suppressed. The splitting vanishes at asymptotically high temperatures as ΔM/M(ΛQCD/T)b\Delta M/M\propto (\Lambda_{QCD}/T)^b, where bb is the beta function coefficient.Comment: 5 p
    corecore